Self-Avoiding Walks over Adaptive Triangular Grids

Gerd Heber* Rupak Biswas' Guang R. Gao®

*CAPSL, University of Delaware, Newark, DE 19716; {heber ,ggao}@capsl.udel.edu
fNASA Ames Research Center, Moffett Field, CA 94035; rbiswas@nas .nasa.gov

Abstract

In this paper, we present a new approach to constructing a “gelf-avoiding” walk through
a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling
curves which is based on a geometric embedding, our approach is combinatorial in the sense
that it uses the mesh connectivity only. We present an algorithm for constructing a self-
avoiding walk which can be applied to any unstructured triangular mesh. The complexity
of the algorithm is O(n -log(n)), where n is the number of triangles in the mesh. We show
that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking
advantage of the regularity of the refinement rules. The proposed approach should be very
useful in the runtime partitioning and load balancing of adaptive unstructured grids.

1 Introduction

Advances in adaptive software and methodology notwithstanding, parallel computational strate-
gies will be an essential ingredient in solving complex, real-life problems. However, parallel
computers are easily programmed with regular data structures; so the development of efficient
parallel adaptive algorithms for unstructured grids poses a serious challenge. An efficient par-
allelization of these unstructured adaptive methods is rather difficult, primarily due to the load
imbalance created by the dynamically-changing nonuniform and irregular grid. Nonetheless,
it is generally believed that unstructured adaptive-grid techniques will constitute a significant
fraction of future high-performance supercomputing. Mesh adaption and dynamic load balanc-
ing must be accomplished rapidly and efficiently, so as not to cause a significant overhead to
the numerical simulation.

Serialization techniques play an important role in all parts of a Finite Element Method
(FEM) over adaptive unstructured grids. A numbering of the unknowns allows for a matrix-
vector notation of the underlying algebraic equations. Special numbering techniques (Cuthill-
McKee, frontal methods) have been developed to optimize memory usage and locality of the
algorithms. On the other hand, in many cases, runtime support for decomposing dynamic
adaptive grid hierarchies is based on a linear representation of the grid hierarchy [8] in the form
of a space-filling curve. Salmon et al. {10, 11] have demonstrated the successful application of
techniques based on space-filling curves to N-body simulations. Other researchers [4, 6, 7, 8, 9]
have also shown how space-filling curves can be used for graph partitioning and similar graph-
related problems.

The general idea of a space-filling curve is a sort of a serialization (or linearization) of visiting
points in a higher-dimensional space. A standard method for the construction is to embed the
object of study into a regular environment (where the standard space-filling curves live). This
approach introduces a kind of an “artificial” structure in the sense that the entire construction

depends on the embedding.! Furthermore, this type of a linear representation forgets about
the combinatorial structure of the mesh which drives the formulation of operators between the
finite element spaces. The questions arises whether one could reduce the different requirements
for a serialization in an adaptive FEM over unstructured grids to a common denominator.

In this paper, we present a new approach to constructing a “gelf-avoiding” walk? through
a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling
curves which is based on a geometric embedding, our approach is combinatorial in the sense
that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding
walk which can be applied to any unstructured triangular mesh. The term unstructured refers
to information that can hardly be compressed, and which does not contain any symmetry or
redundancy. At this level, any labeling or numbering of the mesh components is as good (or as
bad!) as any other scheme. However, the situation changes if the mesh adaption is done in a
hierarchical manner where we, based on a set of simple rules for coarsening and refinement, pay
particular attention to the triangulation of the initial mesh. Tn contrast with a general adaption
scheme that produces just another unstructured mesh, this strategy exploits the structure of
the adaption hierarchy to simplify the labeling process. We would like to modify (or adapt) the
labeling only in regions where the mesh has been altered but not rebuild the entire indexing.
This idea has been extensively developed in [3].

Self-avoiding walks can be used to improve the efficiency of the respective algorithms, in
particular locality and load balancing. However, we need to search for some special classes
of self-avoiding walks that will facilitate runtime load balancing with good locality in terms
of memory access or communication. Since we are not interested in just any kind of walks,
we have to first tackle the question of the existence of walks with the desired properties. In
this paper, we give an existence proof which is constructive in nature so that it also provides
an algorithm for generating such walks. For the case of hierarchical adaptive refinement, the
proposed algorithm is easily amenable to parallelization. In the process of deriving the existence
of a particular class of walks, a natural mathematical framework emerges which, we believe,
can be easily adapted for other special classes of walks.

In Section 2, we define a certain class of walks whose existence for arbitrary unstructured
meshes we can prove (see Appendix A). In Section 3, we present an algorithm based on the
existence proof and show some sample results. The algorithm works for arbitrary unstructured
meshes; however, a parallelization is non-trivial and the walk has to be completely rebuilt after
mesh adaption. Furthermore, since we cannot make any regularity assumptions, the chances are
quite low that we could prove the existence of constrained (in the sense of boundary conditions)
walks. In Section 4, we briefly review hierarchical mesh adaption and a suitable indexing
scheme. We find the missing regularity that enables us to prove the existence of constrained
walks (see Appendix B) and to formulate a truly parallel algorithm for the construction of walks
which is well-behaved with respect to mesh adaption. Section 5 concludes the paper with some
perspectives.

¢ is similar to describing metric properties of a curved surface in terms of a parametrization in the enveloping
(uncurved) three space instead of doing inner geometry, i.e., geometry based only on measurements on the surface
itself. The only inner properties of a mesh are its decomposition into cells of different dimnensions and a face
relation describing how the cells are glued together.

2 his term should be familiar to people working in Monte Carlo methods; however, it is beyond the scope of
this paper to address the similarities and differences in detail.

2

2 Definitions

Consider an arbitrary two-dimensional triangular mesh® 91 and denote the underlying set of
triangles by H. Let #H denote the cardinality of H.

Definition 2.1. A mapping
w:{l,...,#H} —H (1)

is called a self-avoiding walk <=>qef w 15 @ bijection and

Vie{l,...,#H -1} w(i) endw(i+ 1) share an edge or a vertex. (2)

Remark. The previous definition states that a walk visits each triangle exactly once and
that jumps (i.e., two consecutive triangles in the walk that have an empty intersection) are
forbidden. The reader may wonder why our requirements for a walk (cf. Eq. (2)) are rather
weak. As simple examples show, the condition that triangles following one another must share
an edge, is too strong. Generally, self-avoiding walks do not exist under this assumption (cf.
Fig. 1 for a trivial example).

Figure 1: A simple counterexample (look at the dual graph!).
In the following, we consider a special class of self-avoiding walks. |
Definition 2.2. A self-avoiding walk is called proper <= qef
vie{2,...,#H -1} w(i— 1) Nw(E) # w(i) Nw(i + 1). (3)

Remark. The previous definition states that for three triangles following one another in a
proper self-avoiding walk, “jumping” twice over the same vertex is forbidden (cf. Fig. 2).

Figure 2: A forbidden jump.

3By a mesh we understand a simplicial comnplex coming from the simplicial decomposition of a connected 2D
manifold (with or without a boundary).

3 Existence

Proposition 3.1. There exists a proper self-avoiding walk for an arbitrary triangular mesh
m. O

For a proof of Proposition 3.1, we refer the reader to Appendix A. The proof is inductive
over the number of triangles in the mesh and extends an existing proper self-avoiding walk over
to a larger mesh. The proof provides a set of elementary rules which can be used to formulate
an algorithm for constructing proper self-avoiding walks over arbitrary unstructured meshes.
The value of such rules becomes apparent if practical questions such as the proper extension of
existing “incomplete” walks are addressed (and the difficulty of the proof is in this part).

3.1 The Basic Algorithm

The proof of Proposition 3.1 provides an algorithm for the construction of proper self-avoiding
walks: starting from an arbitrary triangle of 9M, choose new triangles sharing an edge with the
current “subcomplex” and extend the existing proper self-avoiding walk over the new triangle.
This algorithm can be represented recursively. Figure 3 shows the pseudo-code for the basic
function, called EXTEND_WALK. The algorithm begins with the selection of an arbitrary
triangle from the mesh. After removing this triangle from the mesh and inserting it (as the first
triangle) into the walk, the function EXTEND_WALK is called with P being the position of
the first triangle in the walk.?

EXTEND_WALK(M, W, P)
mesh M, walk W, position of a triangle in walk P;
{
while (triangle T remains in M sharing an edge with the triangle at P) {
insert T into W according to the rules discussed in the proof of Proposition 3.1;
remove T from M;
set new position @ to position of T" in w;
EXTEND_WALK(M, W, Q);
}
t

Figure 3: The basic function.

The complexity of this algorithm is O(r - log(n)), where n is the number of triangles in the
mesh. This complexity is obtained as follows. Since we organize our triangles in a red-black
tree, a search in this structure is of complexity O(log(n)). The edge-triangle incidence relation
can also be organized in a red-black tree. Since we have to perform this search for each triangle
in our mesh, the overall complexity of our algorithm is O(n - log(n)).

Given the existence of proper self-avoiding walks, other approaches might be favorable. For
example, self-avoiding walks have a long tradition in the application of Monte Carlo methods
to study long-chain polymer molecules. However, this is not the focus of this paper.

1By a position in a walk, we mean a reference to a triangle in the walk rather than an index. We need a data
structure with fast insertion; therefore, an array is not appropriate. In our C++ implementation, a position s
given by list<Triangle>::iterator.

3.2 Results

We implemented a sequential algorithm for the generation of a proper self-avoiding walk using
the set and map containers from the C++ Standard Template Library which is part of the
ANSI-C++ standard. Both containers are implemented with red-black trees.® The results
presented in Tables 1 and 2 were obtained for some sample meshes on a 110 MHz microSPARC
IT using GNU’s g++ compiler (version 2.7.2.3) with the -0 flag. Note that the times in the
tables below include the setup time for the mesh and the edge-triangle incidence structure.

triangles edges | time (s) triangles | edges | ratio | time (s)
2048 3136 0.30 65536 | 131073 | 0.500 | 12.85
4096 6240 0.57 65536 | 114690 | 0.571 | 12.27
8192 | 12416 1.31 65536 106500 | 0.615 12.21

16384 | 24768 2.71 65536 102408 | 0.640 12.15
32768 | 49408 5.54 65536 100368 | 0.653 12.13
65536 | 98688 | 11.82 65536 99360 | 0.660 | 12.02
131072 | 197120 | 24.07 65536 98880 | 0.663 | 11.99
65536 98688 | 0.664 | 11.82

Table 1: Runtimes for various mesh sizes. Table 2: Runtimes for various triangle/edge ratios.

The results in Table 1 indicate the dependence of the runtime on the number of triangles
(or edges). According to our description of the algorithm, the runtime may also depend on
the triangle/edge ratio. The results in Table 2 explore this possibility; however, the numbers
clearly show that the dependence of the execution time on the triangle/edge ratio is negligible
and confirm our complexity estimate for the whole algorithm.

4 Optimization and Parallelization

A standard parallelization of the deterministic algorithm would be based on the observation
that if the proper extensions of a self-avoiding walk for two triangles do not interfere with
each other, then they can be done in parallel. Such an approach is feasible in dealing with
single meshes, when no additional structural information is available, or with families of meshes
without any hierarchical structure, although this procedure might be computationally expensive
in connection with adaption.

For a extended discussion of unstructured mesh adaption, we refer the reader to [1, 5]. In
the following, we restrict ourselves to the case of hierarchical refinement and apply the standard
1:4 (red) and 1:2 (green) subdivision rules for triangles (cf. Fig. 4).

A couple of additional rules are then applied, primarily to assure that the quality of the
adapted mesh does not deteriorate drastically with repeated refinement:

1. All triangles with exactly two bisected edges have their third edge also bisected. Thus, such
triangles are isotropically refined.

2. A green triangle cannot be further subdivided. Instead, the previous subdivision is discarded
and isotropic subdivision is applied to the (red) ancestor triangle.

50ne might also think about an implementation using hash tables.

5

Figure 4: The left picture shows the isotropic subdivision of a triangle. The right one gives an
example of anisotropic subdivision.

For hierarchical meshes a completely different approach to constructing proper self-avoiding
walks is possible: the general algorithm has to be applied only once to the initial mesh and this
“coarse” self-avoiding walk can be reused after adaption. On the local level, we are going to
exploit the regularity of the refinement rules. This leads us to the consideration of constrained
self-avoiding walks. Local regularity allows us to prove the existence of solutions for the un-
derlying “boundary value problems”. (In that sense, the algorithm derived from the proof of
Proposition 3.1 guarantees the solvability of “initial value problems” only.) In the next section,
we sketch a technique which allows the efficient handling of constraints.

4.1 An Indexing Technique for Hierarchical Meshes

It is the task of an index scheme to properly name or label the various objects (vertices, edges,
triangles) of a mesh. We prefer the term index scheme instead of numbering to stress that the
use of natural numbers as indices is not sufficient to meet the naming requirements of the FE
objects on parallel architectures. For a detailed discussion, refer to [2, 3].

Our index scheme is a combination of coarse and local schemes. The coarse scheme labels
the objects of the coarse mesh in such a way that the incidence relations can be easily derived
from the labels. The vertices are enumerated starting from 1. For the example in Fig. 5, the

1 2

5 8
34 p
4 6 7

Figure 5: An L-shaped domain and its coarse triangulation.
set of vertices for the coarse triangulation consists of the following numbers:
vertices = {1, 2, 3, 4, 5, 6, 7, 8}.

The edges of the coarse triangulation are indexed by ordered pairs of integers that correspond
to the endpoints of the edges. The ordering is chosen so that the first index is less than the

second one. For the example in Fig. 5, the set of coarse edges consists of the following pairs:

edgeS: {(]”2)’ (1’3)’ (175)’ (2’5)7 (3’4)’ (315)’ (3’6)1
(4,6), (5,6), (5,7), (5,8), (6,7), (7,8)}-

The same principles are applied to index the coarse triangles. They are denoted by the triple
consisting of their vertex numbers in ascending order. Thus, the set of coarse triangles reads:

triangles = {(1,2,5), (1,3,5), (3,4,6), (3,5,6), (5,6,7), (5,7,8)}.

Note that this index scheme can be applied to elements with curved boundaries as well.
The ideal model for local considerations is given by the two-dimensional standard simplex
o2 (cf. Fig. 6):

o2 = {(z1,%9,73) € R*| @1 + 72 + 73 = 1} (4)

Figure 6: The two-dimensional standard simplex and some points on it.

The local scheme exploits the regularity (and the finiteness) of the refinement rules to
produce names for the objects at subsequent refinement levels [3]. We use (scaled) natural
coordinates as indices in the local scheme. Again, this is done in a way such that incidence
relations and the refinement level are encoded in the indices of the objects (cf. Fig. 7). For
example, the set of vertices at level k in the local model is given by:

Vi(0?) := {(a,b,c) € Nlat+tb+c= 21, (5)

Obviously, there holds v € Vi(0?) &= 2v € Viy 1(0?) and therefore we have the following
embedding Vi(6?) C Vi41(0?). This shows that we can easily move between refinement levels
by rescaling.

Denote by Ex(c?) the set of edges at Jevel k. We choose the integer triple corresponding to
the midpoint of an edge as its index. Hence Ep(0?) = Viy1(o?) — Vi(0?) and

k
B® = B9 (0%) i= | | Bilo?) = B® = Vi1 (0") = Volo)- (6)
i=0

0,0,1) 0,0,2)

1,0

(1,0,0) 0,1,00 (2,00 (1,1,0) (0,2,0)

Figure 7: Examples of the local index scheme for triangular elements. The vertices and triangles
are denoted by integer triples (triangles by bold face).

Denote by Ti(0?) the set of triangles on level k (red and green) and let

k
7 = 7®(0?) = | | Ti(0?). (7)
=0

We choose the integer triples corresponding to the barycenter of a triangle as its index.

The coarse and local schemes are combined by taking the union of the Cartesian products
of the coarse mesh objects with their corresponding local schemes. Ambiguities are resolved by
using a normal form of the index. The key features of such a scheme are:

e Each object is assigned a global name that is independent of any architectural considerations
or implementation choices.

e Combinatorial information is translated into simple arithmetic.

o Tt is well-behaved under (adaptive) refinement. No artificial synchronization/serialization is
introduced.

e Tt can be extended (with appropriate modifications) to three dimensions [3].

4.2 Constrained Self-Avoiding Walks

We call a subset T C T™)(02) a local refinement of o2 if it can be obtained by applying the
refinement rules described in section 4.5 The refinement level of a coarse triangle is defined
to be zero. For an arbitrary triangle, the refinement level is defined as the successor of the
refinement level of the parent triangle (the triangle it was created from by subdivision). The
refinement level of a triangulation is defined to be maximum of the refinement levels of its
triangles [3]. We denote the level of a triangulation T by U(T).

The scheme developed in the previous section allows us, for the case of hierarchical re-
finement, to decompose our considerations into global and local cases. Here “global” means
“related to the initial (coarse) mesh”, while “local” means “restricted to a triangle of the coarse
mesh”. Given a walk over and a local refinement of the coarse mesh one might ask whether it is
possible to extend the walk over the triangles of the local refinement. In addition, we would like
to decouple the considerations for different coarse triangles. This leads naturally to what we
call constrained self-avoiding walks: a walk over the initial mesh leaves a trace or footprint on

8Gince we allow coarsening, the tern “local refinement” is somewhat misleading. However, any local refinement
obtained by a combination of coarsening and refinement can be obtained by refinement only, discarding the history
of the adaption. This assumes that coarsening did not occur beyond the initial mesh.

8

cach coarse triangle which is then translated into a “boundary value problem” for the extension
of the self-avoiding walk. The regularity of the local picture allows us to prove the existence of
constrained proper self-avoiding walks.

Definition 4.1. A pair (o,) € Vi(o?) x Vi(0?) is called constraint on 02 =>qef @ # P.

Remark: The previous definition states that we forbid constraints requiring that a walk enters
and leaves a triangle through the same edge or the same vertex. (The latter would imply
a forbidden jump in the “coarse” walk.) In the definition, we implicitly used the embedding
Vo(o?) C Vi(0?) and the isomorphism Eo(0?) ~ Vi(0?) —Vo(o?). Figure 8 shows a few examples
of constraints. The entry constraints are denoted with bullets and the ezit constraints with filled
triangles.

/\ /a\ i
By A by a
K)

Figure 8: A few examples for constraints.

Definition 4.2. Let ¢ = (o, 3) be a constraint on 02 and T C TW®(0?) a local refinement of
o2, A proper self-avoiding walk w: {1,... ,#T} — T is called compatible with ¢ <= qef

a C w(l) and B C w(#T). (8)

Lemma 4.1. Let ¢ = {a,(3) be an arbitrary constraint on o2 Let R,G € Ti(0?) be a red
and green triangle, respectively. There ezist proper self-avoiding walks on R and G which are
compatible with c. O

Remark: Lemma 4.1 can be easily proved and is valid not only for constraints on 0% and
R,G € Ty(o?), but also for constraints on red and green triangles at any level, since the proof
of Lemma 4.1 depends only on the fact whether a triangle is red or green.

Obviously, the formulation of constraints is not restricted to coarse triangles, i.e., triangles
at level zero. A slightly more general definition than definition 4.1 goes as follows:

Definition 4.3. Let £ € Nk > 0. A pair (o,3) € Vi(0?) x Vi(0?) is called constraint on
t € Ty_1(0?) <=aes @ # 0.

Proposition 4.1. Let ¢ = («, 3) be an arbitrary constraint on o2 and T C T®)(0?) be a local
refinement of 2. There exists a proper self-avoiding walk wr on T which is compatible with

c. O

Given a constraint on o2 and a local refinement T C T (52), Proposition 4.1 guarantees
the existence of a compatible proper self-avoiding walk. The proof in Appendix B also provides
an algorithm for constructing the solution of this “boundary value problem”. The synthesis
of Propositions 3.1 and 4.1 provides a simple parallel algorithm which requires changing an
existing proper self-avoiding walk only where the mesh has been adapted (coarsened/refined).
If the mesh adaption affected only levels higher than k, the walk has to be modified only over
triangles whose level is greater than k. Note that the local adaptions of the walk are decoupled
from one another and can be done independently; thus, this is a truly parallel algorithm.

9

5 Conclusions and Perspectives

In this paper, we have developed a theoretical basis for the study of self-avoiding walks over
two-dimensional adaptive unstructured grids. We described an O(n - log(n)) algorithm for the
construction of proper self-avoiding walks over arbitrary unstructured meshes and reported
results of a sequential implementation. We discussed parallelization issues and suggested a
significant improvement for hierarchical adaptive unstructured grids. For this situation, we
have also proved the existence of constrained proper self-avoiding walks.

The algorithms presented allow a straightforward generalization to tetrahedral meshes; how-
ever, there is some flexibility because of additional freedom in three-space. The application to
load balancing is likewise rather straightforward. However, modifications to improve locality in
the sense of a generalized frontal method requires a more detailed study of the relationships
between (more specialized) constraints on walks and cache memory behavior.

References

(1] R. Biswas, R.C. Strawn: A new procedure for dynamic adaption of three-dimensional
unstructured grids, Appl. Numer. Math., 13(6), 1994, pp. 437-452.

[2] J. Gerlach: Application of natural indexing to adaptive multilevel methods for linear tri-
angular elements, RWCP Tech. Rep., TR 97-010, Tsukuba Research Center, Japan, 1997.
http://www.rwcp.or.jp/people/] ens/publications/TR-97-010.ps.gz

[3] J. Gerlach, G. Heber: Fundamentals of natural indexing for simplex finite elements in two
and three dimensions, RWCP Tech. Rep., TR 97-008, Tsukuba Research Center, Japan,
1997. http://www.rwCp.or. jp/people/jens/publications/TB.—97—008 .ps.gz

[4] M. Griebel, G. Zumbusch: Hash-storage techniques for adaptive multilevel solvers and
their domain decomposition parallelization, AMS Contemporary Math. Series, 218, 1998,
pp. 279-286.

[5] G. Heber, R. Biswas, G.R. Gao: Self-avoiding walks over two-dimensional adaptive un-
structured grids, CAPSL Tech. Memo, TM 21, University of Delaware, Newark, 1998.

[6] X. Liu, G. Schrack: Encoding and decoding the Hilbert order, Software - Prac. and Ezp.,
26(12), 1996, pp. 1335 -1346.

[7] C.-W. Ou, S. Ranka, G. Fox: Fast and parallel mapping algorithms for irregular problems,
J. of Supercomputing, 10(2), 1995, pp. 119-140.

[8] M. Parashar, J.C. Browne: On partitioning dynamic adaptive grid hierarchies, 29th Hawaii
Intl. Conf. on System Sciences, 1996, pp. 604-613.

[9] J.R. Pilkington, S.B. Baden: Dynamic partitioning of non-uniform structured workloads
with spacefilling curves, IEEE Trans. on Par. and Dist. Sys., 7(3), 1996, pp. 288 -300.

[10] J. Salmon, M.S. Warren, G.S. Winckelmans: Fast parallel tree codes for gravitational and
fluid dynamical N-body problems, Intl. .J. of Supercomputer Appl., 8(2), 1994, pp. 129 142.

[11] J. Salmon, M.S. Warren: Parallel, out-of-core methods for fast evaluation of long-range
interactions, 8th SIAM Conf. on Parallel Processing for Scientific Computing, 1997.

10

A Proof of Proposition 3.1

Before we start with the proof of Proposition 3.1, we remind the reader of two technical results.
The respective proofs are not very difficult, but beyond the scope of this paper.

Lemma A.1l. Let t,ty,ts,t3 be triangles in a mesh M and
vie {1,2,3} ti|t (9)
Then either
tiNtaNt3 =0 (10)
or M is tetrahedral (cf. Fig. 9). O

(Note that if two triangles in a mesh share two vertices they must share the corresponding
edge.)

Figure 9: A tetrahedral mesh.

Lemma A.2. Let M be a mesh. There exists a triangle 7 in M such that M — 7, the complex
obtained by removing T from M, is still a mesh. O

We use the following notation. If two triangles t;,to share an edge, we write ¢, | ta. Let w
be a self-avoiding walk. If w(3) | w(i + 1), we will write w(i) F w(i + 1) indicating that w enters
w(i+ 1) from w(i) over an edge. If w(i) f wl(i + 1), we write w(i) N w(i + 1) indicating that w
jumps into w(z + 1) from w(i) over a vertex.

Proof of Proposition 3.1: We prove Proposition 3.1 by induction over the number of trian-
gles.

Assume that there exist proper self-avoiding walks for meshes with n triangles. Let 90U be
a mesh with n + 1 triangles.

Let 7 be a triangle in 9 such that 9 — 7, the mesh consisting of all the triangles in M
except 7, is a mesh (see Lemma A.2). Mesh 9 — 7 hasn triangles and hence, by our induction
assumption, there exists a proper self-avoiding walk wyn_-. We show that wsn_r can be extended
to a proper self-avoiding walk wyn for M. We call this wsy a proper extension of woy_r.

Let ¢ be an triangle of 9t — 7 sharing an edge with 7 (i.e. t| 7 holds). For an appropriate
i € {1,...,n}, there holds

b= w1 (0): (1)

The discussion naturally can be split up into four cases, depending on whether way ., enters
t through an edge or a vertex and leaves through an edge or a verlex, respectively.

11

We omit the subscript M — 7 from w in the following for the sake of clarity. If we do not
know whether the transition from w(i) to w(i + 1) goes over an edge or a vertex, we write
w(i) = w(i +1).

In the figures below, parts of wop.r are drawn as solid lines whereas the modifications leading
to wey are drawn as dashed lines. Triangles are indexed by their position in the walk (e.g. w(i)
is denoted by ¢).

Case I |w(i —1)Fw()Fwi+1)
Figure 10 illustrates the modifications necessary if way_, enters and leaves ¢ through an
edge.

(@ (®) ©

Figure 10: Existing walk enters the triangle adjacent to 7 through an edge and leaves it through
another edge.

o fw(i—-1)NT7+#w(@—2)Nw(i—1), then w(i —1) = 7 w(?) is a proper extension of w
(cf. Fig. 10(a)).

o Ifw(i—1)N7 =w(i—2)Nw(i — 1), then w(i —2) ~w(i—1).

~ Hwli+1)NT #w(i+ 1) Nw(i +2), then w(i) F 7 — w(i + 1) is a proper extension
of w (cf. Fig. 10(b)).
~ Hw(i+1)N7 =w(+1)Nw(i +2), then w(i +1) N w(i+2).
« Hw(i—1)Nw(i+1) #wE+1)Nw(i+2), then w(i—2) 2 7hwi)Fwi-1)—
w(i + 1) is a proper extension of w (cf. Fig. 10(c)).
« Tet wi —) Nw(i+ 1) = w(i+ 1) Nw(i +2). According to Lemma A.1, either
M is tetrahedral or w(i — D) Nw(@E +1) N7 =0. M is tetrahedral, there is
nothing to prove. For the other case, we have 0 =wi—-NwiE+1)NT =
wi+DNwiE+2)NT=wli+1)NT = w(i+1)Nw(i +2). This is a contradiction
with our assumption w(i + 1) ~ w(i +2) which means w(i + DNnw(+2) #0.
Therefore, if M is not tetrahedral, the case w(i—1) Nw(i+1) = wli+1)Nw(i+2)
is not possible.7

"Ohviously, there are proper self-avoiding walks for tetrahedral meshes. Note that a tetrahedral mesh cannot
be a proper submesh of a larger 2D mesh which is a mauifold as a topological space.

12

Case IL: |w(i — 1) Fw(@) ~w(i +1)
Figure 11 illustrates the hodifications necessary if wyn_ , enters ¢ through an edge and leaves
it through a vertex.

(a) (®) ©

Figure 11: Existing walk enters the triangle adjacent to 7 through an edge and leaves it through
a vertex.

o If w(i) Nw(i+1) C w(i) N7, then w(i) F 7 = w(i + 1) is a proper extension of w (cf.
Fig. 11(a)).
e Suppose w(i) Nw(i+1) ¢ w(i)N7. (Note that w(8) Nw(i+1) definitely consists of a single
vertex!)
~ fw(—1)N7 # w(—2)Nw(i— 1), then w(i — 1) = 7 w(i) is a proper extension
of w (cf. Fig. 11(b)).
~HwiE—1)NT=wi-2)Nwli- 1), then w(i —2) ~ w(i —1). In that case,
w(i—2) = 7Fw@E)bw(i—1) 2w+ 1) is a proper extension of w (cf. Fig. 11(c)).

Case IIL: [w(i — 1) ~w(i) Fw(i+ 1)
Figure 12 illustrates the modifications necessary if way_, enters t through a vertex and
leaves it through an edge.

i-1

(a) (b) ©

Figure 12: Existing walk enters the triangle adjacent to 7 through a vertex and leaves it through
an edge.

13

o If w(i — 1) Nw(z) C w(@)NT, then w(i — 1) = 7 F w(i) is a proper extension of w (cf.
Fig. 12(a)).

e Suppose w(i — 1) Nw(i) ¢ w(i) N 7.

- Hw(i+1) N7 # w(i+ 1) Nw(i + 2), then w(i) F 7 — w(i + 1) is a proper extension
of w (cf. Fig. 12(b)).

~Hwi+1)N7T=wi+1)Nwi+2), then w(+ 1) ~ w(i+2). In that case,
wi—1) =2 w(i+1) Fw(@) -7 2 wli+ 2) is a proper extension of w (cf. Fig. 12(¢)).

Case IV: |w(i — 1) ~w(@) ~w(i+1)
Figure 13 illustrates the modifications necessary if wen . enters and leaves ¢ through a
vertex.

(a) ()

Figure 13: Existing walk enters the triangle adjacent to 7 through a vertex and leaves it through
another vertex.

o Tfw(i—1)Nw(E) C w(i) N, then w(i - 1) = 7 + w(i) is a proper extension of w (cf.
Fig. 13(a)).
)

o If w(i — 1) Nw(i) ¢ w(i) N7, then w(i) F 7 = w(i+ 1) is a proper extension of w (cf.
Fig. 13(b)).

Since we have been able to properly extend woy..; in all cases, our proposition is proved. O

B Proof of Proposition 4.1

Proof: We prove Proposition 4.1 by induction over the level [(T) of 7. Lemma 4.1 is the
starting point for our induction ({(T) = 1).

Assume now that [(T) =n+1. Let T" =T — (T N Tpy1(0?)). T' is a local refinement of o?
and [(T") = n. This technique is known as hierarchical coarsening (2] (cf. Fig. 14).

By our induction assumption, there exists a proper self-avoiding walk wypr ¢ which is com-
patible with c. We show that there is a proper extension wr,c of wrr c.

T can be obtained from 7" by local refinement. Tet 7 be a triangle of 7' which must be
subdivided (red or green) in order to obtain T'. wyrc induces a constraint on the children of 7
or, in other words, the constraint on 7 is propagated to 7’s children by wipr c. This situation is
illustrated in Fig. 15. Figure 15(a) shows a local refinement 7" and the given constraint (c, 8).

14

B\ L AN /N

Figure 14: Four steps of hierarchical coarsening.

Figure 15(b) shows one step of hierarchical coarsening where we already have a proper self-
avoiding walk wy . This self-avoiding walk induces constraints on the higher-level triangles as
shown in Fig. 15(¢c)).

(c)) A
. . VAVAN
NN

Figure 15: Two steps of constraint propagation.

Since 7 will be refined red or green, we can apply Lemma 4.1 (and the remark thereafter)
to properly extend wyv o over the children of 7.

If we apply this procedure to all triangles t € 7" which must be subdivided to get to T, we
obtain wr.

This proves our proposition. O

Figure 16 shows an example for the correct extension of a proper self-avoiding walk to a
higher level of refinement. Figure 16{a) shows the mechanical way dictated by the constraints.
This walk can often be improved in the sensc that certain jumps over vertices can be replaced
by jumps over edges since the triangles under consideration share an edge (cf. Fig. 16(b)).

{b)

Figure 16: Extension over a higher level of refinement.

